
My life with the MCF5407 Colfire Board
(draft)

Norman Feske

July 10, 2004

Contents

1 Introduction 2

2 Where to get the source code? 2

3 Cypress PCI bridge 3
3.1 Building the PCI address space . 3
3.2 PCI window . 3
3.3 Endian . 4

4 Matrox 1064 4
4.1 Endian crap . 4
4.2 Attribute controller register . 4
4.3 The X-Registers . 5

4.3.1 Palette RAM write test . 5
4.3.2 VGA sequence register test . 5

5 Video Device Driver Environment 5
5.1 Choosing the driver sources . 6
5.2 Compiling the driver . 6
5.3 Linking and the implementation of the driver environment 7

5.3.1 Changes of the original driver code . 8
5.4 Firing the bullet . 8
5.5 Experiments with the ATI Rage driver from Linux-2.4.20 8

5.5.1 Modifications of the Linux driver . 9

6 Interrupt-based driver for Wacom Artpad 9

7 DOpE window server 9

8 MicroAPL CF68K Emulation Library 9

1

9 Porting MiNT to the Coldfire 9
9.1 Providing an execution environment to MiNT . 10
9.2 Trap handler with gcc . 10
9.3 Telling MiNT some sweet lies . 11
9.4 Timer initialization . 12
9.5 Character output via BIOS . 12
9.6 Keyboard input . 12
9.7 TOS services that are needed by MiNT . 13

9.7.1 System variables . 13
9.7.2 System calls . 14

9.8 Modifications of the MiNT kernel . 15
9.8.1 CPU detection . 15
9.8.2 Incompatibility of thediv instruction . 15

10 Various other things 15

11 The next things to do 16

12 Document history 16

1 Introduction

In the recent time, the Atari Coldfire Project was not publicly present very much. Thus, some
people are sceptical about the current state of the project. As I cannot speak for all members of the
project — each one dedicated to a different field of the project — I will present my activies and
views in regard to create a Coldfire-based operating system in this document. I have to disappoint
those of you, who expect the presentation of a ready-to-use operating system. This goal is not
reached, yet. The time frame needed to build this operating system depends mainly on my spare
time.

Concretely, this document describes my experiences with the MCF5407 Coldfire board. The
board was supplied by Gerald Kupris from Motorola to enable us to develop our operating system
before our custom hardware will be ready. A lot of thanks for this great opportunity! I also use
this document as a personal notebook about implementation-related issues. Thus, do not wonder
about the level of detail in some sections.

The the goals of my work are to get MiNT to run on the Coldfire and to try out ideas about
operating system architectures. The most of the stuff I did with the board so far were experiments
to learn about the Coldfire and are not immediately related to Atari. So please do not wonder about
some weird things, described here.

2 Where to get the source code?

All things, I describe within this document are publicly available under the terms of theGNU
General Public Licence Version 2. I use a Subversion repository for development. Subversion
is a revision control system, which is similar to CVS but offers some advanced features (for ex-
ample, moving and copying of files) that CVS lacks of. Further information about Subversion is

2

available athttp://subversion.tigris.org . There is a very detailed description of this
tool available athttp://svnbook.red-bean.com .

My Subversion repository is hosted athttp://os.inf.tu-dresden.de/~nf2/svn .
You can browse the repository using your web browser. You can check out the Coldfire related
stuff by using the instruction:

svn checkout http://os.inf.tu-dresden.de/~nf2/svn/trunk/acp

All revision information, such as log messages, are world-readable, too.

3 Cypress PCI bridge

The MCF5407 evaluation board features a PCI connector. This is a great chance for me to learn
about programming PCI devices. My concrete goal was to drive a graphics card. The follow-
ing sections contain technical stuff that I learned from my experiments or retrieved from various
sources (documentation, uClinux kernel, internet).

The memory area from0xffff0000 to 0xffff3fff is dedicated to the Cypress PCI bridge.
The lower area (0x0 - 0x1fff) is the configuration space of the bridge, the higer area (0x2000 -
0x3fff) is a window to the PCI address space. The visible content of this window can be defined
using the Cypress register0x460 (see section 3.2).

3.1 Building the PCI address space

Before PCI resources can be accessed, we must map them to the PCI address space, which has
nothing to do with the host’s address space. We can set all bits and subsequently read the memory
base address registers of the PCI device’s configuration space to determine the type and size of
the provided ressources (this is a standard way which is described in Markus Fichtenbauer’s PCI
articlehttp://acp.atari.org/files/pci-bios/index.html). The lowest bit of an
base address register indicates if the entry belongs to an I/O (bit0 = 1) or memory resource (bit0 =
0). The number of the other lower bits which are set to zero provide the information about the size
of the resource.

I/O and memory ressources can be mapped to PCI addresses by writing the desired start ad-
dresses to their corresponding memory base registers in the PCI configuration block of the PCI
device.

Additionally, the access to I/O and memory resources must be enabled by setting the bits 0 and
1 of the DEVCTRL (0x3) register in the configuration space.

3.2 PCI window

The Cypress PCI bridge supports three types of PCI transactions which can be performed with the
help of the physical base address register (0x460) of the Cypress PCI bridge:

configuration transaction The physical base address register must be set to0x40000006 .

IO transaction The physical base address register must be set to the desired base address of the
PCI address space where we mapped the I/O ressource (see section 3.1). Additionally, the
lowest two bits must be set to0x2 .

3

memory transaction We have to do the same as for I/O transactions except that the lowest two
bits of the physical base address register must be set to0x4 .

After that, the defined configuration, I/O or memory space of the connected PCI card is available
at the PCI address space window (at0xffff2000 - 0xffff3fff).

3.3 Endian

The Cypress PCI bridge seem to perform a conversion to big-endian. I guess this can be configured
using the Local Bus Configuration Register (0x4fc) bits 6,8,9 - but I did not manage it to properly
switch the conversion off.

4 Matrox 1064

Messing around with graphics cards took a lot of my time. My attempts of initializing such devices
range from ground-up driver implementation (following the documentation) through hacking video
drivers out of Linux to a video-device-driver environment that is able to use unmodified Linux
video-drivers on the Coldfire evaluation board.

The positive side of this soul-destroying task is that I gained a lot of knowledge about PCI and the
programming of various graphics cards (ATI Rage, ATI Radeon7500, Matrox1064, MatroxG450).

The following sections present some technical aspects that I stumbled across and found note-
worthy. There might be references to source codes I am working on. Please do not get irritated by
that.

4.1 Endian crap

The Matrox 1064 features limited big-endian support (activated via bit 31 of the OPTION(0x40)
register of the PCI configuration space) which must not be be switched on with the Cypress PCI
bridge because endian conversion is already be performed by the Cypress chip.

I checked that using the OPMODE and IEN registers of the Matrox card, which I set to
0xfffffff and subsequentely read it - the zeroed-out bits allow an estimation of the correct
byte order.

4.2 Attribute controller register

The Attribute controller registers are funny. They must be accessed 8bit wise. Therefore the endian
conversion of the Cypress chip produces total crap. Thus, we have to access the ATTRX(0x1fc0)
via the address0x1fc0+3 and the ATTRD(0x1fc1) via the address0xfc1-1 . Secondly, the
ATTRX register changes its meaning with every write access. The first access must specify an
index followed by a second write access specifying the value to write to the indexed register.
Reading the register will always return the current index. The content of a register can be read via
the ATTRD register. To reset the toggling of ATTRX we have to read the INSTS1(0x1fda - I am
not 100% sure about that address) register. Guess how much time I needed to explore that!

4

4.3 The X-Registers

The X-Registers (0x3c00 - 0x3c0a) are programed in a similar way as the attribute controller
register. There is an index register PALWTADD(0x3c00+3) respectively PALRDADD(0x3c03-3)
(which seem to have the same meaning) to specify an index. After that, the indexed register can
be accessed via X_DATAREG(0x3c0a-1) and PALDATA(0x3c01+1).

4.3.1 Palette RAM write test

The PALRDADD register is automatically incremented while reading or writing the PALDATA
register. In order to enable the palette stuff, we first have to initialise the XMISCCTRL(index
0x1e) register. The test program looks like this:

int i;

/* set PCI address space window */
pci_map_control(0x2000);

/* set up DAC stuff */
v_pci_w8("PALWTADD", PALWTADD, XMISCCTRL);
v_pci_w8("X_DATAREG[XMISCCTRL]", X_DATAREG, 0xff);

v_pci_w8("PALWTADD", PALWTADD, 0);
for (i=0;i<0x12;i++) pci_w8(PALDATA, i);

v_pci_w8("PALWTADD", PALWTADD, 0);
for (i=0;i<0x12;i++) v_pci_r8("PALDATA", PALDATA);

4.3.2 VGA sequence register test

The following code tests the VGA sequence registers. The register SEQX(0x1fc4+3) is used to
specify the index of the desired register while SEQD(0x1fc5+1) is used to perform the actual
access. I just set all bits of all sequence registers to one and compared the resulting bits that stood
zero with the specification.

pci_map_control(0x0);
for (i=0;i<5;i++) {

v_pci_w8("SEQX", SEQX, i);
v_pci_w8("SEQD", SEQD, 0xff);

}

5 Video Device Driver Environment

After a half-successful attempt to hack the Matrox driver code from the Linux-2.2 kernel (after
2-3 days of intensive digging in the driver code I even got the Matrox to display a blue screen) I

5

decided to give the Device Driver Environment (DDE) approach a go. Instead of modifying the
original driver code and inducing new bugs I decided to let the original driver code of Linux-2.4.20
run in an emulation enviroment. A small emulation code layer provides all functions needed to let
the driver “think” it is at home in the Linux kernel. The following steps were needed to perform
this task:

5.1 Choosing the driver sources

The needed driver source code files had to be identified. I choose the files shown in table 1. Not
all of them are actually needed to drive a Mystique but including them simplifies later support for
other Matrox models. As you can see, the ported driver code consists of ca. 9000 lines (without
comments).

source file lines of code notes

g450_pll.c 390
g450_pll.h 5
i2c-matroxfb.c 280 the DAC as used on Mystique
matroxfb_DAC1064.c 877
matroxfb_DAC1064.h 150
matroxfb_Ti3026.c 675
matroxfb_Ti3026.h 8
matroxfb_accel.c 999
matroxfb_accel.h 9
matroxfb_base.c 2232 main init code
matroxfb_base.h 702
matroxfb_crtc2.c 730
matroxfb_crtc2.h 37
matroxfb_g450.c 111
matroxfb_g450.h 9
matroxfb_maven.c 122
matroxfb_maven.h 6
matroxfb_misc.c 830 also core functions
matroxfb_misc.h 17
total 8965

Table 1: Used driver source codes from the Linux-2.4.20 kernel.

5.2 Compiling the driver

I had to determine the needed Linux-kernel header files. This was easy:

grep -h "^#include" *.c *.h | sort | uniq

The more difficult job was to decide which header files of the Linux kernel could be used in their
original form and which ones had to be replaced by own implementations or fakes. Table 2 shows
an overview over the unchanged and modified/faked header files. This step was - by far - the most

6

time intensive one. I also had to determine the right defines to choose to produce a driver that actu-
ally does something useful (the configuration can be found ininclude/linux/autoconf.h
). In result all original C source files compiled happily.

original replaced by own implementations

include/linux/config.h include/linux/autoconf.h
include/linux/types.h include/linux/module.h
include/linux/stddef.h include/linux/kernel.h
include/linux/posix_types.h include/linux/console.h
include/linux/fb.h include/linux/delay.h
include/linux/console_struct.hinclude/linux/fs.h
include/linux/list.h include/linux/i2c.h
include/linux/timer.h include/linux/init.h
include/linux/devfs_fs.h include/linux/ioctl.h
include/linux/i2c-algo-bit.h include/linux/ioport.h
include/linux/errno.h include/linux/mm.h
include/linux/selection.h include/linux/pci.h
include/linux/matroxfb.h include/linux/slab.h
include/linux/pci_ids.h include/linux/spinlock.h
include/linux/i2c-id.h include/linux/string.h
include/asm/types.h include/linux/tty.h
include/asm/posix_types.h include/linux/vt_buffer.h
include/asm/errno.h include/linux/interrupt.h
include/asm/ioctl.h include/linux/kdev_t.h
include/video/fbcon-cfb16.h include/linux/devfs_fs_kernel.h
include/video/fbcon-cfb2.h include/linux/prefetch.h
include/video/fbcon-cfb24.h include/linux/sched.h
include/video/fbcon-cfb32.h include/asm/io.h
include/video/fbcon-cfb4.h include/asm/uaccess.h
include/video/fbcon-cfb8.h include/asm/unaligned.h

include/asm/semaphore.h
include/asm/rwsem.h
include/asm/page.h
include/asm/param.h
include/video/fbcon.h

Table 2: Untouched and replaced header files of the Linux kernel

5.3 Linking and the implementation of the driver environment

In order to link an executable binary, all unresolved symbols had to be implemented (or at least
faked). At first I created dummy implementations using ased script with linker error messages
as input. All dummy implementations can now be found inmga_dde_dummy.c . I had to fully
implement all essential functions such as PCI device access. Table 3 shows the emulation code
files.

7

source file lines of code notes

emu_lx_fbcon.c 19 fake of Linux framebuffer
emu_lx_pci.c 104 Linux PCI interface
mga_dde_dummy.c 197 misc (48) dummy implementations
mga_dde_init.c 40 PCI and Matrox init
mga_dde_init.h 1
mga_dde_pci.c 39 core PCI for MCF5407
mga_dde_pci.h 7
mga_dde_pci_debug.c 76 verbose PCI functions
mga_dde_pci_debug.h 6
total 480

Table 3: Matrox DDE source files

5.3.1 Changes of the original driver code

The original driver code had to be slightly changed to make it run on the Coldfire board. Due to
the DDE approach these changes were very small (nearly non-existent):

• matroxfb_base.c: Set the default value of the static variablenoinit to 1 (original
value 0)

• matroxfb_base.c: The original code to detect the size of the framebuffer does
not work correctly, yet. Thus, I commented out thegoto failVideoIO in function
initMatrox2 to let the driver proceed with the initialisation procedure even if the mem-
ory probing fails.

• matroxfb_base.h: I renamed the define__LITTLE_ENDIAN to__LITTLE_ENDIAN_OUTW
to make the driver use thereadb andwriteb functions.

5.4 Firing the bullet

After successfull compilation and linking I had to find the proper way to jump into the drivers
code. To my very surprise all I had to do was to call the functionmatroxfb_init in
matroxfb_base.c . When setting thenoinit variable to0 the driver even sets a default
video mode (640x480 16bit). So there is a huge improvement over the Matrox driver code in
Linux-2.2! So now we have screen output on the Coldfire evaluation board - a small step for the
world but a huge step for Norman :-)

5.5 Experiments with the ATI Rage driver from Linux-2.4.20

I enhanced the video device driver environment to provide all functionality needed for the aty
driver from Linux-2.4.20. The driver starts up and successfully probes my 3D Rage (GT) card. It
also initialises a default video mode but I have not managed to display a descent picture on screen.

In the meanwhile I discovered that the power consumption of more recent graphics boards is
just too high for the Coldfire evaluation board. I experimented with ATI Radeon, Matrox G450,
ATI Rage LX and various other graphics cards, but the Matrox 1064 was the only one with a
low-enough power consumption.

8

5.5.1 Modifications of the Linux driver

• mach64_ct.c: return at the begin of functionaty_set_pll_ct

If the Coldfire executes the functionaty_st_pll for setting up the PLL_GEN_CNTL register
- the program freezes shortly afterwards. Even the break-button of the Coldfire evaluation board
refuses to work then.

6 Interrupt-based driver for Wacom Artpad

The MCF5407 evaluation board features two serial ports — one is used for debugging and the
other is available for custom use. Since I needed an input device for my further work, I decided
to implement a driver for a Wacom Artpad, that lied around somewhere. The nice thing about
the Wacom Artpad is its simple communication protocol. Since the driver had to work interrupt-
driven, I had to discover how to program interrupts on the Coldfire, which was a fairly easy walk.
The initialitation of the serial interfaces is well described by the source code of the Motorola dBUG
monitor and the uCLinux source code.

7 DOpE window server

I ported the DOpE window system to the Coldfire board. DOpE is a window system that I develop
for the real-time operating system DROPS. It is my current research project at the university.
Information about DOpE are available on my private website:

http://os.inf.tu-dresden.de/~nf2
Basically, I needed the port of DOpE to the Coldfire for ego-reasons ;-)

8 MicroAPL CF68K Emulation Library

One fundamental thing for running Atari applications on the Coldfire is a working emulation of
mk68k instructions that are not present in the Coldfire. MicroAPL provides a solution for this
problem: The cf68klib is a virtual machine that can either execute usermode 68k instructions only,
or virtualizes a whole 68k CPU including supervisor mode! The exception vector table and all in-
terrupts are also virualized by cf68klib such that a whole operating system could be run within the
virtual machine. After a weekend of studdying the documentation and experimenting, I success-
fully started up the virtual machine and executed instructions that are not natively implemented in
the Coldfire CPU! This is a big step for getting MiNT to run on this platform.

9 Porting MiNT to the Coldfire

There are two possible ways of how to port the FreeMiNT kernel to the Coldfire:

• We can port the kernel sources to a new target system and compile it using the native gcc for
the Coldfire. This needs a lot of knowledge of the MiNT kernel sources and a lot of porting
work. Of course, the Coldfire-branch of the kernel must be maintained to be up-to-date with
the main brach of MiNT.

9

• We can try to use a MiNT kernel image, compiled for the original Atari and execute it inside
the cf68klib. For this approach, we need to find out about all the things, MiNT relies on —
such as the used TOS system calls and timers and exception vectors — and must provide
these pre-requisites by our underlying system. The drawback of this approach is possible
performance-loss because some instructions of the MiNT kernel image must be emulated by
the cf68klib. The big advantage is, that we were always up-to-date with the current MiNT
kernel as we just need the binary kernel image (mint.prg). The performance can be improved
later by using the Coldfire-gcc for compiling the C-parts of MiNT and changing the assembly
routines not to use non-native Coldfire instructions anymore.

I decided to give the second approach a go.
For executing the MiNT kernel, we first must relocate the TOS executable — TOS executables

can be loaded at any address in memory. Thus, when absolute references within the executable are
used by the program these references must be adapted to the actual position of the executable in
memory. I just deploy the relocation routine that I used in many demos and it works well on the
Coldfire. Actually, even the relocation routine runs inside the cf68klib virtual machine because it
uses some non-Coldfire mc68k instructions.

9.1 Providing an execution environment to MiNT

The MiNT kernel image is a normal TOS executable and thus, it relies on the environment, pro-
vided by TOS — such as a valid basepage containing all information about the segments, environ-
ment string and arguments of the program. I implemened a basepage initialization routine. The
address of the basepage is then passed to MiNT. Now, with the basepage provided we can jump
into the MiNT kernel.

We must let MiNT think to be at home at TOS by providing the TOS functions that are actually
needed by MiNT. The first things we see from the MiNT kernel are some attempts to call GEMDOS
functions via thetrap #1 instruction. Thus, we must install a handler for suchtrap calls. The
MicroAPL cf68klib allows us to use user-level trap handlers that look exactly like MC68k trap
handlers. The MC68k as well as the Coldfire4 feature a table of exception vectors at an address,
which is defined via thevbr register. Initially, this register is set to zero. That means, MiNT
expects the exception vectors to reside just at the beginning of the address space. I do not want
to change MiNT so I move the real exception vector table of the Coldfire to another location
(0x01000000) and use the address space from0x0 to 0x3ff for storing the virtual exception
vector table of the virtual MC68k cpu. For serving the needed GEMDOS calls, a custom (user-
level) exception handler fortrap #1 must be installed at address0x84 .

In result we get some nice GEMDOS traps such as Mshrink, Fsfirst and Cconws. Yes! There
are the first boot messages of MiNT!

9.2 Trap handler with gcc

Sadly, the way of how arguments are passed to TOS via the known TOS syscall bindings is not
compatible with the function calling conventions used by gcc. TOS programs use to push 16bit and
32bit arguments onto the stack without any gaps in-between. In contrast, gcc alignes all arguments
to 32bit-even addresses by leaving 2-byte gaps between two 16bit arguments. According to Peter
Barada, the maintainer of the Coldfire-gcc, there is no way to prevent the 4-byte stack alignment
of gcc.

10

Thus, we need to convert the syscall frame to a valid gcc call frame. This conversion is called
marshalling (slightly inspired by the terminology used for IDL compilers). For this, I created a
small tool that generates the needed conversion code for specified syscall signatures.

In the meanwhile, Frank Naumann told me a way of how to work around the 32-bit stack align-
ment. All one need to do is to pass the parameters not directly but using a structure. Thus, MiNT
applies its alignment policy for aligning struct elements when constructing the structure in mem-
ory. The default policy for that is 16bit alignment - exactly what we need. So we could implement
the trap dispatch functions simply by using

struct setexc_args { short vecnum, long handler; };
static long setexc(struct setexc_args args) {

...
}

instead of

static long setexc(short vecnum, long handler) {
...

}

Anyway, I kept using the generated stubs because I do not want the kernel to work directly on
the user stack pointer. In this case any malicious user program could crash the system by setting
its stack pointer to an illegal address before calling the kernel.

9.3 Telling MiNT some sweet lies

During startup, MiNT determines on which kind of hardware platform and TOS-version it runs
and takes this information in account for its later operation. To make MiNT behave as we like
it, we tell MiNT some (bogus) information. Later, we can build-in Coldfire-specific support into
the MiNT kernel. One information source, MiNT takes into account, is thecookie jar. This is
a central point in the system that provides so-called cookies_, which hold information for certain
system properties and interfaces to software extensions of the operating system. On the Atari the
cookie jar is created by TOS and filled with information about the machine type. In our execution
environment we also create such a cookie jar and supply the following cookies:

COOKIE__MCH This is the machine type. We define its value to be0x30000 L, which repre-
sents “Falcon hardware”.

COOKIE__VDO This cookie specifies the installed video hardware. We set this cookie to the
value0x30000 L, which means “Falcon video”. This way, MiNT requests the size of the
frame buffer via the XBIOS functionVgetSize during its memory initialization. Other-
wise, it would use line-A stuff, which I really do not like to care about ;-)

COOKIE_PMMU This cookie holds the information about the availability of a PMMU (Program-
able Memory Management Unit). Since the Coldfire does not feature a PMMU, we need to
make MiNT to keep its hands away from PMMU related things and thus, set this cookie to
0x0 L.

11

9.4 Timer initialization

One thing, MiNT relies on, is a 200Hz timer that operates on the exception vector0x114 . On
the Atari, this timer is called Timer-C. On the Coldfire, there is no such Timer-C, but two internal
timers (Timer-0 and Timer-1). The initialization of these timers is not compatible with Atari-ST
hardware. On Atari machines, TOS initializes all timers and MiNT just installs itself into the
corresponding exception vector. Thanks to that, MiNT does not perform any hardware-specific
timer initialization and gives us the chance to do this initialization in advance within our execution
environment. One tricky thing is, that the Coldfire does not allow us to use the exception vector
0x114 for its internal timer (the internal timer generates an autovector interrupt, for which exists
a dedicated range of exception vectors). I solved this problem by installing an exception routine at
the actually used exception vector0x74 that just jumps right to the routine,0x114 is pointing at:

timer_200hz_vec:
bsr timer_200hz_start | init next timer interrupt
addq.l #1,JIFFIES_200HZ | increment jiffies value
move.l TIMER_C_VEC,-(%sp) | branch to timer-c exception handler
rts

The subroutinetimer_200hz_start just schedules the next timer interrupt.JIFFIES_200HZ
is actually the address0x4ba . This is a TOS system variable that counts the number of Timer-C in-
terrupts. MiNT relies on this system variable. Thus, we need to feed it here. TheTIMER_C_VEC
is the exception vector0x114 , which is not in use by the Coldfire but only holds the logical
Timer-C exception vector. From MiNT’s viewpoint, Timer-C just works as normal.

Now, with a timer provided by us, MiNT passes its “calibrate delay loop” successfully. Argh!
What do we see there? 2.54 BogoMIPS? This was really not the performance, I expected! In fact,
it is only half as fast as a Falcon. Instead of whining, I checked the cache of the Coldfire and found
it switched off. After activating the cache we get 151.55 BogoMIPS. This was the value, I expected
from the 150Mhz Coldfire processor. In fact, the cf68klib does not affect this value because the
benchmarking function does not use any instructions, that must be emulated.

9.5 Character output via BIOS

At the very first stage of MiNT’s startup, it uses GEMDOS for textual ouput. After it takes over
the GEMDOS, BIOS and XBIOS traps, however, it switches over to BIOS-based textual output. In
fact, it does not use BIOS traps for printing characters (one trap exception per character would be
damn slow) but it uses the vectorsxcostat andxconout as shortcuts. Thus, MiNT just calls
the routines installed at these vectors via a normal branch instruction. This way quite tricky to find
out ;-)

9.6 Keyboard input

Currently, MiNT does not feature a custom keyboard driver but relies on the BIOS for keyboard
input. This is quite nice for us because it gives us the opportunity to easily emulate a keyboard
by our custom BIOS routines that can use the serial terminal as a virtual keyboard (the Coldfire
evaluation board does not feature a keyboard connector).

12

Keyboard events are passed from the BIOS to MiNT via a ring-buffer, calledIOREC. MiNT re-
quests the location of this ring-buffer by using the XBIOS functionIorec . Every 20 miliseconds
(on each VBL interrupt), MiNT polls the ring-buffer for new keyboard events. In our execution
environment we install an interrupt handler for the serial interface. The interrupt handler supplies
all incoming data to the ring-buffer, shared with MiNT. Each entry of the event buffer has the size
of 4 bytes. We can submit the incoming ASCII values directly to the buffer by setting the first three
bytes to zero and the 4th byte to the ASCII value. This way, we even do not need to care about the
conversion between ASCII and keycodes - really cool!

9.7 TOS services that are needed by MiNT

The MiNT kernel relies on a number of TOS system variables and TOS system calls during its
bootup.

9.7.1 System variables

TOS uses the memory area from0x400 to 0x600 for storing OS specific variables that are
(more or less) documented. I identified the following system variables to be used by MiNT during
the startup. There may be more variables needed by different subsystems of MiNT and TOS
applications.

_sysbase (0x4f2) Pointer to a structure that describes the installed operating system (TOS).
MiNT determines the installed TOS version by reading theos_version member of this
structure. It also uses thepkbshift member. In our execution environment we install an
os_header structure and set theos_version to 0x102 to let MiNT think, it is dealing
with TOS version 1.02.

xcostat (0x55e + 0x8) The eight variables at0x55e are pointers to BIOSxcostat routines
for the different BIOS devices. MiNT uses the device number 2 for its textual output of the
console. Thus, we need to install a handler at0x55e + 0x8 .

xconout (0x57e + 0x8) Similar to xcostat , the eight variables at0x57e point to corre-
sponding handlers for the character output to the different BIOS device numbers. We need
to install an output handler for device 2.

getbpb (0x472) This is a vector to a function that returns the BIOS parameter block. MiNT
executes this routine. Thus, we need to install at least a dummy routine there.

_longframe (0x59e) This variable describes the format of the exception stack frame. It is eval-
uated by the Timer-C handler of MiNT. We just have to make sure that this variable is set to
zero.

_timr_ms (0x442) This value describes the period of the VBL timer interrupt. Normally, it is
set to 20 (20 miliseconds) - so we do the same. This system variable is used by MiNT’s VBL
handler to schedule context switches.

_p_cookies This variable contains the pointer to the cookie jar. As described in section 9.3, we
provide a cookie jar to MiNT.

13

_hz_200 (0x4ba) This variable is also calledjiffies counter. Its value is incremented on each
Timer-C interrupt. MiNT does not increment this value by itself but relies on TOS to incre-
ment this variable.

9.7.2 System calls

In the execution environment, we handle trap 1 (GEMDOS), trap 2 (GEM), trap 13 (BIOS) and
trap 14 (XBIOS). By default, we do nothing and just return 0. Anyhow, some system calls must be
dispatched by the execution environment. This section is a brief summary of the system calls that
must be handled specifically to make MiNT behave nicely.

GEMDOS calls

mxalloc Mxalloc is used by MiNT to obtain its memory from TOS. MiNT takes all memory
it can get by subsequentially calling this function. All received memory blocks are then
handled over to MiNT’s memory manager. We only return one chunk of ST-RAM memory.

cconws This function is used during the first stage of startup for printing the very first boot
messages. We just forward all characters to the serial connection.

tgettime Tgettime is used during the startup for waiting for the users input. We just return a
counter value that is incremented on each call to make MiNT proceed with its startup.

super This function is used by MiNT for entering the supervisor mode and thus, to take over
control over the machine. Ok, so be it.

BIOS calls

bconout This function is used by MiNT for its textual output after the very first startup stage is
finished. We just forward all characters to the serial console.

XBIOS calls

supexec This XBIOS call is used to execute one subroutine in supervisor mode. MiNT uses
Supexec to perform the CPU detection.

bconmap We just return a -1 to make MiNT believe that we do not feature anyBconmap facility.

keytbl This function returns a pointer to a key table structure. This structure contains mapping
tables from hardware keycodes to ASCII values. Right now, the tables are bogus but, at least,
they do exist.

iorec Iorec is called by MiNT to obtain the location of the keyboard input ring buffer as de-
scribed in section 9.6.

GEM calls

appl_init MiNT calls appl_init just to make sure, that GEM is not already present and com-
plains in the other case.

14

9.8 Modifications of the MiNT kernel

Thanks to the approach of the execution environment, I only needed some very minor modifications
of the MiNT kernel. Actually, I had to modify only two lines of code. ;-)

9.8.1 CPU detection

Although the cf68klib emulates an MC68030 CPU, MiNT detects an MC68040 for some reason.
I did not examine this issue any further and set themcpu variable manualy to the value 30 (which
represents a MC68030). (function_getmch in file arch/init_mach.c) Of course, the obvi-
ous way to get this right is to implement a CPU detection routine for the Coldfire.

9.8.2 Incompatibility of the div instruction

The division instruction of the Coldfire is not fully compatible with the MC68K division in-
struction but does not make the Coldfire to trap. Thus, the cf68klib has essentially no chance
to emulate this instruction properly. This problem occured only once within the functionPUTL in
libkern/vsprintf.c , which is called by sprintf. The function looks like this:

PUTL (char *p, long *cnt, ulong u,
int base, int width, int fill_char) {

char obuf[32];
char *t = obuf;
long put = 0;

do {
*t++ = "0123456789ABCDEF"[u % base];
u /= base;
width--;

} while (u > 0);

With each iteration, the valueu is divided by thebase and then used as abort criteria for the
while loop. For some reason, the abort criteria is never reached. This problem does not occur when
we castu to a signed long when dividing:

(long)u /= base;

10 Various other things

During my life together with the Coldfire evaluation board I did a lot of experiments, which I
did not described in detail. Among these things were the attempt to port the MiNT kernel to run
natively on the Coldfire CPU, programming the hardware acceleration features of the Matrox 1064,
building a toolchain for gcc-3.3.2 and creating a build system for my Coldfire developments based
on GNU make.

15

11 The next things to do

This is roughly a list of my next steps on the path to a proper TOS- compatible OS on the Coldfire:

• Implementing a pseudo block device that works on a RAM disk image.

• Porting a VDI and AES to the system — this point is still a bit unclear to me. As for now I
am not sure about the options I have (fVDI? XAAES?). Help of other developers would be
greatly appreciated.

Once I have MiNT running at a usable degree, I will try out some OS architectural ideas lead-
ing to the direction of a microkernel (similar to L4). My vision is to have a microkernel-based
multi-server operating system running with MiNT as single-server side-by-side. (quite similar to
L4Linux running on L4).

12 Document history

changes at 2004-03-14 fixed references, added table of contents

changes at 2004-06-13 added section 9

changes at 2004-06-14 added section 2

changes at 2004-07-10 complemented section 9.2 with Frank’s solution, added sections 9.3,
9.4, 9.5, 9.6, 9.7 and 9.8

16

